

Journal of Organometallic Chemistry 503 (1995) C51-C54

Preliminary communication

Donor-free bis(trifluoromethyl) cadmium, $(CF_3)_2Cd$: a readily available low-temperature difluorocarbene source

R. Eujen *, B. Hoge

Anorganische Chemie, Fachbereich 9, Universität-GH, 42097 Wuppertal, Germany

Received 11 May 1995

Abstract

Donor-free bis(trifluoromethyl)cadmium, $(CF_3)_2Cd$, has been obtained at -40 °C from diethylcadmium and CF_3I in a quantitative yield. The Raman spectrum of $(CF_3)_2Cd$ is reported. In the presence of non-coordinating solvents the highly reactive compound eliminates CF_2 even below -5 °C. Its feasibility as a low temperature difluorocarbene source has been demonstrated by difluorocyclo-propenation reactions with some alkenes and alkynes as well as by insertion into metal-chlorine bonds. The NMR spectra of some CF_2CI - and CF_3 -containing arsanes are reported.

Keywords: Cadmium; Arsenic; Difluorocarbene; Trifluoromethyl

Donor-stabilized bis(trifluoromethyl)cadmium $((CF_3)_2Cd \cdot 2 D)$ is well known. In these complexes the Lewis acidity of the tetracoordinated cadmium atom is reduced by the donor, which is typically an ether such as mono- or diglyme, CH₃CN, pyridine or DMF [1]. Prepared readily by CH₃/CF₃ exchange between CdMe₂ and CF₃I in the presence of a donor [2] it has found valuable applications both as a trifluoromethylating agent [3] and as a difluorocarbene source [4,5]. Unstable, donor-free (CF₃)₂Cd has been obtained by cocondensation of cadmium vapor and CF₃ radicals generated in a r.f. discharge [6] and characterized by its ¹⁹F NMR spectrum utilizing CD₂Cl₂ as solvent.

We have reinvestigated the alkyl group exchange and found that in the solvent-free system one CH₃ group of CdMe₂ is exchanged by CF₃I within 5 min at 20 °C. The resulting CF₃CdCH₃ does not undergo further exchange with CF₃I but decomposes to the fluoride and difluorocarbene, which forms C_2F_4 and c-C₃F₆ and also inserts into a cadmium-carbon bond of CdMe₂:

$$Cd(CH_3)_2 + CF_3I \xrightarrow{K_1} CF_3CdCH_3 + CH_3I$$
 (1a)

рт

$$CF_3CdCH_3 \longrightarrow FCdCH_3 + CF_2$$
 (1b)

$$CH_3CdCH_3 + CF_2 \longrightarrow CH_3CdCF_2CH_3$$
 (1c)

Details of these and related Cd–C insertion reactions and products will be described elsewhere [7].

The reactivity of $CdEt_2$ towards exchange with CF_3I is much higher than that of $CdMe_2$ which allows the lowering of the reaction temperature. If CF_3I is reacted with $CdEt_2$ (molar ratio 2.5:1) in chloroform at -40 °C the exchange according to

$$Cd(C_2H_5)_2 + 2CF_3I \longrightarrow (CF_3)_2Cd + 2C_2H_5I \quad (2)$$

is complete within 10 min and $(CF_3)_2Cd$ precipitates quantitatively as a white powder. Solvent, excess CF_3I and C_2H_5I are removed in vacuo. Above -5 °C $(CF_3)_2Cd$ decomposes to CdF_2 and CF_2 , the latter

Table 1 Solid state Raman spectra^a of polycrystalline $(CF_3)_2Cd^b$ and $(CF_2)_2Hg$ [8]

(013)2116[0]			
(CF ₃) ₂ Cd	(CF ₃) ₂ Hg	Assign	ment
196 s 218 m–s	224 vs 234 s	$\left. \begin{array}{c} a_{g} \\ f_{g} \end{array} \right\rangle$	ν _s (MC)
 696 s 960 sh 980 m, b	516 w 714 s 1030 w 1043 m	}	$\delta_{as} (CF_3) \delta_s (CF_3) \nu_{as} (CF_3)$
1135 sh 1157 s	1146 m 1163 s	$\begin{pmatrix} a_g \\ f_g \end{pmatrix}$	$\nu_{\rm s}~({\rm CF}_3)$

^a In cm⁻¹; s strong, m medium, w weak, v very, sh shoulder, b broad.

^b Recorded at - 50°C.

^{*} Corresponding author.

⁰⁰²²⁻³²⁸X/95/\$09.50 © 1995 Elsevier Science S.A. All rights reserved SSDI 0022-328X(95)05848-6

oligomerizing to the volatile products C_2F_4 and $c-C_3F_6$ (Warning: Pure $(CF_3)_2Cd$ tends to explode violently upon warming to room temperature!). The reaction with donor molecules leads to the known adducts but may proceed so exothermically that some decompositon takes place. $(CF_3)_2Cd$ reacts pyrophorically with air.

The Raman spectrum of solid $(CF_3)_2Cd$ recorded at -50 °C (Table 1) strongly resembles that of (CF₂)₂Hg [8], especially in that there are two intense ν (CdC) modes which have been assigned to the a_g/f_g crystal field components of the a_{1g} vibration. In accord with a very weak Cd-C bond this mode which is independent of the metal mass appears at lower energy than that of $(CF_3)_2$ Hg. Furthermore, the significant red-shift especially of the $v_{as}(CF_3)$ stretch, along with the non-volatility of $(CF_3)_2Cd$, points towards an increased strength of intermolecular fluorine contacts to the more Lewisacidic cadmium atom which again favor the release of CF₂. Weak Hg-F contacts have also been found for $(CF_3)_2$ Hg [8] which in contrast to the non-volatile $(CF_3)_2$ Cd sublimes even below ambient temperature.

The stability of $(CF_3)_2Cd$ is readily controlled by the solvent. In solvents of low polarity such as CHCl₃, CH2Cl2 or toluene it decomposes quantitatively even

Table 2

Difluorocarbene cyclopropenation products ^a
--

Educt	Product	¹⁹ F NMR	Ref.
cyclohexene	F F	– 150.6 ppm (d), ² <i>J</i> (FF) 155.6 Hz – 125.9 ppm (d, t), ³ <i>J</i> (FH) 15.3 Hz	[9]
l-hexene	F F C₄H9	- 145.3 ppm (d, d), ${}^{2}J$ (FF) 155.9 Hz, ${}^{3}J$ (FH) 13.1 Hz, - 128.4 ppm (d, t), ${}^{3}J$ (FH) 13.1 Hz	[10]
2,3-dimethyl-2- butadiene ^b	F F	-137.4 ppm ^c (t, q), ³ J(FH _{cis} + FH _{tr}) 16.0/15.6 Hz, ⁴ J(F _A H + F _B H) 4.5 Hz	
trans-butene	F F	- 141.7 ppm, ${}^{2}J(FF)$ 154.0 Hz, ${}^{3}J(HF_{cis})$ 16.0 Hz, ${}^{3}J(HF_{tr})$ 0.8 Hz, ${}^{4}J(HF_{cis})$ 2.9 Hz, ${}^{4}J(HF_{tr})$ 1.6 Hz	[9,10]
<i>cis</i> -stilbene ^d	F F F F	– 147.0 ppm (d), ² J(FF) 157.2 Hz, – 117.2 ppm (d, t), ³ J(FH) 14.3 Hz	
trans-stilbene		-134.0 ppm (t), ${}^{3}J(FH_{cis} + FH_{tr})$ 15.2 Hz	
cyclohexylacetylene	F F	103.2 ppm (d, d), ⁴ J(FH) 2.6 Hz, ³ J(FH) 1.7 Hz	[11]
diphenylacetylene	F F	- 112.3 ppm (s)	

^a In toluene. Yields as determined by ¹⁹F NMR spectroscopy are in excess of 95%. ¹⁹F NMR chemical shifts are given with reference to external CFCl₃; multiplicities from proton coupled spectra are indicated s singlet, d doublet, t triplet, q quartet.

^b With an excess of Cd(CF₃)₂ addition of a second CF₂ moiety with formation of two isomers (ratio I : II = 4 : 1) is observed. Isomer (I): δ (¹⁹F) - 137.7 ppm (F_A), -139.3 ppm (F_B), ²J(FF) 156.8 Hz, ⁵J(F_AF_{B'}) 2.5 Hz, ⁵J(F_BF_{B'}) 1.9 Hz, ⁵J(F_AF_{A'}) 1.3 Hz; Isomer (II): δ (¹⁹F) - 135.0 ppm (F_A), -139.9 ppm (F_B); ²J(FF) 159.0 Hz, ⁵J(F_AF_{B'}) 1.3 Hz, ⁵J(F_BF_{B'}) 1.8 Hz, ⁵J(F_AF_{A'}) 0.4 Hz. ^c δ (F_A) - δ (F_B) \approx 0.02 ppm.

^d In chloroform.

Table 3				
NMR data of the pro	ducts from the reaction	n of Cd(CF ₃) ₂	with AsCl ₃	or AsF ₃ ^a

	δ(¹⁹ F) ^b		δ(¹⁹ F)	$\delta(^{13}C)$	J(CF)	$^{2}J(CF)$	$^{3}J(CF)$	$^{2}J(\text{FF})$	$^{3}J(FF)$	$^{4}J(FF)$
	$\overline{(CF_2Cl)} \Delta \delta(F_A - F_B)$		$\overline{(CF_3)}$	(CF ₃ or CF ₂ Cl)						
$\overline{As(CF_3)_3}$		-	-47.1 d	127.4	340.6 °		4.7 °	_	_	7.1 ^e
$As(CF_3)_2Cl$	-	-	- 56.4	127.7	345.3	-	6.0	-	_	7.8
$As(CF_3)_2F$		-	- 59.8	129.6	344.5	c	6.0	-	1.4	7.3
$As(CF_3)Cl_2$	-	-	-65.8	128.8	349.5	-	-			-
$As(CF_3)F_2^{-f}$	_	-	- 71.0	131.0	346.1	с	-	-	1.7	-
$As(CF_3)_2(CF_2Cl)$	-41.6	_	-46.4	c	с	_	c		_	7.5
$As(CF_3)(CF_2Cl)_2$	-41.8	0.22	-46.6	С	c		c	c	-	7.0 ^g
As(CF ₂ Cl) ₂ Cl	-49.6	1.00	-	130.0	с	-	c	158.5	_	8.7 ^h
$As(CF_2CI)_2F$	-53.5	0.94	_	c	с	-	c	165.9	6.6/5.5	8.9 ⁱ
As(CF ₂ CI)Cl ₂	- 57.9	-	_	131.9	355.2	-	-	-	_	-
As(CF ₂ Cl)FCl	-61.4	≈ 0.0	_	133.7	353.1	18.7	-	-	4.0	_
As(CF_2Cl) F_2^{j}	-65.2	-	-	134.9	350.7	17.5	-	_	1.4	_

Chemical shifts in ppm with reference to external CFCl₃, coupling constants in Hz, solvent: CDCl₃.

^b Averaged values for AB systems.

с Not observed.

d $\Delta \delta({}^{12}CF_{A} - {}^{13}CF_{B}) 0.137 \text{ ppm.}$

^e Positive signs for both ³J(CF) and ⁴J(FF) have been determined with respect to the negative sign of ¹J(CF) by computer simulation of the A_3B_6X spin system.

 ${}^{4}_{3}J_{A}(A') = 118.0 \text{ ppm (broad).}$ ${}^{g}_{4}(ASF) - 118.0 \text{ ppm (broad).}$ ${}^{g}_{4}(AS)_{2}X_{3} \text{ system, } {}^{4}J(AA') \approx {}^{4}J(BS') \approx {}^{4}J(AS') 7.0 \text{ Hz; } {}^{4}J(AX) \approx {}^{4}J(BX) 7.3 \text{ Hz.}$ ${}^{h}_{4}J(AA') \approx {}^{4}J(AB') 9.4 \text{ Hz, } {}^{4}J(BB') 9.7 \text{ Hz.}$ ${}^{i}_{4}J(AA') \approx {}^{4}J(BB'); {}^{4}J(AB') = 9.8 \text{ Hz.}$

 $^{j} \delta(As^{19}F) - 111.2 \text{ ppm (broad).}$

below -5 °C with evolution of CF₂ which may be trapped quantitatively with electron rich unsaturated systems. A selection of difluorocyclopropenation reactions along with characteristic NMR data is given in Table 2. With electron-poor systems such as allyl bromide dimerization of CF₂ is preferred, and only minor amounts of (bromomethyl)difluorocyclopropane have been detected by NMR spectroscopy (δ (¹⁹F) -127.6/-144.9 ppm, ¹J(FF) 159.4 Hz). The synthetic potential of the cadmium reagent was also used for the generation of difluoromethyl ethers from alcohols. For example, when *i*-propanol and a suspension of excess (CF₃)₂Cd in toluene were slowly warmed from -30 °C to ambient temperature, (CH₃)₂CHOCF₂H $(\delta(^{19}\text{F}) - 81.7 \text{ ppm}, ^{2}J(\text{FH}) 77.6 \text{ Hz})$ [12] was obtained in 50% yield along with HCF₃.

With inorganic chlorides such as Me₃SnCl or AsCl₃ insertion of CF₂ into the metal-halide bond with formation of CF₂Cl derivatives along with some trifluoromethylation is observed. Presumably, the latter is due

Table 4 NMR data of compounds observed in the reaction of Cd(CF₃)₂ with AsCl₃ or AsF₃ in presence of CdEt₂ ^a

	δ(¹⁹ F) ^b		δ(¹⁹ F)	$^{2}J(FF)$	$^{4}J(FF)$	$^{4}J(\text{HF})$	⁵ <i>J</i> (HF)
	$\overline{(CF_2Cl)} \qquad \Delta\delta(F_A - F_B)$		$\overline{(CF_3)}$	$(CF_3 \text{ or } CF_2Cl)$			
As(CF ₂ Cl) ₂ Et	-44.5	1.13		163.4	8.0 d	c	0.9/0.4
$As(CF_2CI)Et_2$ ^c	-44.0	-	-	_		0.4	0.9
As(CF ₂ Cl)(F)Et ¹	- 56.4	1.60	-	162.1	-	c	0.9/0.6
$As(CF_2CI)(CI)Et$	- 52.8	1.96	-	156.9	_	c	1.3 ^{′ g}
$As(CF_3)Et_2$	-	-	-53.1	-	-	с	0.7
As(CF ₃)(Cl)Et	-	-	- 50.2	-	-	0.3	0.7
As(CF ₃)(CF ₂ Cl)Et	- 44.5	1.05	- 50.6	164.6	6.9 ^h	c	0.7 ⁱ

See Table 3.

^b Averaged values for AB systems.

Not observed.

^{d 4}J(AA'); ⁴J(AB') 7.3 Hz; ⁴J(BB') 6.5 Hz.

 $^{\circ}\delta(CH_3)$ 1.2 ppm, $^{3}J(HH)$ 7.8 Hz, $\delta(CH_2)$: (AB system) 1.9/1.7 ppm, $^{2}J(HH)$ 13.1 Hz, $\delta(^{13}CF_2CI)$ 133.2 ppm, $^{1}J(CF)$ 346.5 Hz, $^{3}J(CH)$ 5.0

 $\int_{a}^{13} J(F_{A}F) 8.4 \text{ Hz}, \ {}^{3}J(F_{B}F) 4.2 \text{ Hz}.$ $g \ {}^{5}J(F_{A}H); \ {}^{5}J(F_{B}H) 0.7 \text{ Hz}.$ $h \ {}^{4}J(F_{A}F) \approx {}^{4}J(F_{B}F).$

 $^{1.5}J(CF_3AsCH_2CH_3).$

to fluorination by the cadmium fluoride formed in the course of the reaction followed by insertion of CF₂ into the M-F bond. For example, the reaction of Me₃SnCl with $(CF_3)_2$ Cd in CHCl₃ gives both $(CF_2Cl)SnMe_3$ $(\delta^{(19}F) - 46.6 \text{ ppm}, {}^2J^{(119/117}SnF) 236.2/225.7 \text{ Hz},$ $\Delta\delta(^{35}\text{Cl}-^{37}\text{Cl})$ 0.0096 ppm) and CF₃SnMe₃ in a 2:1 ratio with a total yield of 90%. With AsCl₃ the distribution of the products seems to be similar to that of the reaction of donor-stabilized (CF₃)₂Cd [5]. The formation of $(CF_2CI)AsX_2$ (X = F, Cl) along with mixed CF_3/CF_2Cl containing species $(CF_3)_n(CF_2Cl)_mAsX_{3-n-m}$ is evident from the ¹⁹F NMR spectra (Table 3), the CF₂Cl function being easily recognized by its isotope pattern in the ¹⁹F NMR spectra ($\Delta\delta$ (³⁵Cl-³⁷Cl) 0.006 ppm). The facile insertion of CF_2 into the As-F bond was independently demonstrated by reaction of AsF₃ with excess $(CF_3)_2Cd$ which yields $(CF_3)_3As$ almost quantitatively. If the reaction is carried out with a material still containing residual CdC₂H₅ functions, partial ethylation of the products is observed (Table 4) with $(CF_2Cl)AsEt_2$ as the major product.

Acknowledgements

Financial support by the Fonds der Chemischen Industrie is gratefully acknowledged.

References

- B.L. Dyatkin, B.I. Martynov, I.L. Knunyants, S.R. Sterlin, L.A. Fedorov and Z.A. Stumbrevichute, *Tetrahedron Lett.*, (1971) 1345; L.J. Krause and J.A. Morrison, *J. Am. Chem. Soc.*, 103 (1981) 2995; D.J. Burton and D.M. Wiemers, *J. Am. Chem. Soc.*, 107 (1985) 5014.
- [2] H. Lange and D. Naumann, J. Fluorine Chem., 26 (1984) 1.
- [3] J.A. Morrison, Adv. Inorg. Radiochem., 27 (1983) 293; D. Naumann, W. Strauss and W. Tyrra, J. Organomet. Chem., 407 (1991) 1; D. Naumann, M. Finke, H. Lange, W. Dukat and W. Tyrra, J. Fluorine Chem., 56 (1992) 215; R. Eujen and U. Thurmann, J. Organomet. Chem., 433 (1992) 63.
- [4] L.J. Krause and J.A. Morrison, J. Am. Chem. Soc., 103 (1981)
 2995; H. Lange and D. Naumann, J. Fluorine Chem., 27 (1985)
 299.
- [5] L. Riesel, H. Vogt and A. Brueckner, Z. Anorg. Allg. Chem., 588 (1990) 26.
- [6] M.A. Guerra, T.R. Bierschenk and R.J. Lagow, J. Chem. Soc., Chem. Commun., (1985) 1550; J. Am. Chem. Soc., 108 (1986) 4103.
- [7] B. Hoge and R. Eujen, in preparation.
- [8] D.J. Brauer, H. Bürger and R. Eujen, J. Organomet. Chem., 135 (1977) 281.
- [9] G.A. Wheaton and D.J. Burton, J. Fluorine Chem., 9 (1977) 25.
- [10] W.R. Dolbier, H. Wojtowicz and C.R. Burkholder, J. Org. Chem., 55 (1990) 5420.
- [11] Y. Bessard and M. Schlosser, Tetrahedron, 47 (1991) 7323.
- [12] R.A. Mitsch and J.E. Robertson, J. Heterocycl. Chem., 2 (1965) 152.