Preliminary communication

Donor-free bis(trifluoromethyl) cadmium, $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{Cd}$: a readily available low-temperature difluorocarbene source

R. Eujen *, B. Hoge
Anorganische Chemie, Fachbereich 9, Universiä̈t-GH, 42097 Wuppertal, Germany

Received 11 May 1995

Abstract

Donor-free bis(trifluoromethyl)cadmium, $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{Cd}$, has been obtained at $-40^{\circ} \mathrm{C}$ from diethylcadmium and $\mathrm{CF}_{3} \mathrm{I}$ in a quantitative yield. The Raman spectrum of $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{Cd}$ is reported. In the presence of non-coordinating solvents the highly reactive compound eliminates CF_{2} even below $-5{ }^{\circ} \mathrm{C}$. Its feasibility as a low temperature difluorocarbene source has been demonstrated by difluorocyclopropenation reactions with some alkenes and alkynes as well as by insertion into metal-chlorine bonds. The NMR spectra of some $\mathrm{CF}_{2} \mathrm{Cl}$ - and CF_{3}-containing arsanes are reported.

Keywords: Cadmium; Arsenic; Difluorocarbene; Trifluoromethyl

Donor-stabilized bis(trifluoromethyl)cadmium $\left(\left(\mathrm{CF}_{3}\right)_{2} \mathrm{Cd} \cdot 2 \mathrm{D}\right)$ is well known. In these complexes the Lewis acidity of the tetracoordinated cadmium atom is reduced by the donor, which is typically an ether such as mono- or diglyme, $\mathrm{CH}_{3} \mathrm{CN}$, pyridine or DMF [1]. Prepared readily by $\mathrm{CH}_{3} / \mathrm{CF}_{3}$ exchange between CdMe_{2} and $\mathrm{CF}_{3} \mathrm{I}$ in the presence of a donor [2] it has found valuable applications both as a trifluoromethylating agent [3] and as a difluorocarbene source [4,5]. Unstable, donor-free $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{Cd}$ has been obtained by cocondensation of cadmium vapor and CF_{3} radicals generated in a r.f. discharge [6] and characterized by its ${ }^{9} \mathrm{~F}$ NMR spectrum utilizing $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ as solvent.

We have reinvestigated the alkyl group exchange and found that in the solvent-free system one CH_{3} group of CdMe_{2} is exchanged by $\mathrm{CF}_{3} \mathrm{I}$ within 5 min at $20^{\circ} \mathrm{C}$. The resulting $\mathrm{CF}_{3} \mathrm{CdCH}_{3}$ does not undergo further exchange with $\mathrm{CF}_{3} \mathrm{I}$ but decomposes to the fluoride and difluorocarbene, which forms $\mathrm{C}_{2} \mathrm{~F}_{4}$ and $c-\mathrm{C}_{3} \mathrm{~F}_{6}$ and also inserts into a cadmium-carbon bond of CdMe_{2} :
$\mathrm{Cd}\left(\mathrm{CH}_{3}\right)_{2}+\mathrm{CF}_{3} \mathrm{I} \xrightarrow{\mathrm{RT}} \mathrm{CF}_{3} \mathrm{CdCH}_{3}+\mathrm{CH}_{3} \mathrm{I}$
$\mathrm{CF}_{3} \mathrm{CdCH}_{3} \longrightarrow \mathrm{FCdCH}_{3}+\mathrm{CF}_{2}$
$\mathrm{CH}_{3} \mathrm{CdCH}_{3}+\mathrm{CF}_{2} \longrightarrow \mathrm{CH}_{3} \mathrm{CdCF}_{2} \mathrm{CH}_{3}$

[^0]Details of these and related $\mathrm{Cd}-\mathrm{C}$ insertion reactions and products will be described elsewhere [7].

The reactivity of CdEt_{2} towards exchange with $\mathrm{CF}_{3} \mathrm{I}$ is much higher than that of CdMe_{2} which allows the lowering of the reaction temperature. If $\mathrm{CF}_{3} \mathrm{I}$ is reacted with CdEt_{2} (molar ratio 2.5:1) in chloroform at $-40^{\circ} \mathrm{C}$ the exchange according to
$\mathrm{Cd}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}+2 \mathrm{CF}_{3} \mathrm{I} \longrightarrow\left(\mathrm{CF}_{3}\right)_{2} \mathrm{Cd}+2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{I}$
is complete within 10 min and $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{Cd}$ precipitates quantitatively as a white powder. Solvent, excess $\mathrm{CF}_{3} \mathrm{I}$ and $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{I}$ are removed in vacuo. Above $-5{ }^{\circ} \mathrm{C}$ $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{Cd}$ decomposes to CdF_{2} and CF_{2}, the latter

Table 1
Solid state Raman spectra ${ }^{a}$ of polycrystalline $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{Cd}^{\mathrm{b}}$ and $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{Hg}[8]$
$\left.\begin{array}{lll}\hline\left(\mathrm{CF}_{3}\right)_{2} \mathrm{Cd} & \left(\mathrm{CF}_{3}\right)_{2} \mathrm{Hg} & \text { Assignment } \\ \hline 196 \mathrm{~s} & 224 \mathrm{vs} & \mathrm{a}_{\mathrm{g}} \\ 218 \mathrm{~m}-\mathrm{s} & 234 \mathrm{~s} & \mathrm{f}_{\mathrm{g}}\end{array}\right\} \quad \nu_{\mathrm{s}}(\mathrm{MC})$.

[^1]oligomerizing to the volatile products $\mathrm{C}_{2} \mathrm{~F}_{4}$ and c - $\mathrm{C}_{3} \mathrm{~F}_{6}$ (Warning: Pure $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{Cd}$ tends to explode violently upon warming to room temperature!). The reaction with donor molecules leads to the known adducts but may proceed so exothermically that some decompositon takes place. $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{Cd}$ reacts pyrophorically with air.

The Raman spectrum of solid $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{Cd}$ recorded at $-50^{\circ} \mathrm{C}$ (Table 1) strongly resembles that of $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{Hg}$ [8], especially in that there are two intense $\nu(\mathrm{CdC})$ modes which have been assigned to the a_{g} / f_{g} crystal field components of the a_{tg} vibration. In accord with a very weak $\mathrm{Cd}-\mathrm{C}$ bond this mode which is independent
of the metal mass appears at lower energy than that of $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{Hg}$. Furthermore, the significant red-shift especially of the $\nu_{\text {as }}\left(\mathrm{CF}_{3}\right)$ stretch, along with the non-volatility of $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{Cd}$, points towards an increased strength of intermolecular fluorine contacts to the more Lewisacidic cadmium atom which again favor the release of CF_{2}. Weak $\mathrm{Hg}-\mathrm{F}$ contacts have also been found for $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{Hg}$ [8] which in contrast to the non-volatile $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{Cd}$ sublimes even below ambient temperature.

The stability of $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{Cd}$ is readily controlled by the solvent. In solvents of low polarity such as CHCl_{3}, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ or toluene it decomposes quantitatively even

Table 2
Difluorocarbene cyclopropenation products ${ }^{\text {a }}$

Educt	Product	${ }^{19} \mathrm{~F}$ NMR	Ref.
cyclohexene		$\begin{aligned} & -150.6 \mathrm{ppm}(\mathrm{~d}),{ }^{2} J(\mathrm{FF}) 155.6 \mathrm{~Hz} \\ & -125.9 \mathrm{ppm}(\mathrm{~d}, \mathrm{t}),{ }^{3} J(\mathrm{FH}) 15.3 \mathrm{~Hz} \end{aligned}$	[9]
1-hexene		$\begin{aligned} & -145.3 \mathrm{ppm}(\mathrm{~d}, \mathrm{~d}),{ }^{2} J(\mathrm{FF}) 155.9 \mathrm{~Hz},{ }^{3} J(\mathrm{FH}) 13.1 \mathrm{~Hz}, \\ & -128.4 \mathrm{ppm}(\mathrm{~d}, \mathrm{t}),{ }^{3} J(\mathrm{FH}) 13.1 \mathrm{~Hz} \end{aligned}$	[10]
2,3-dimethyl-2butadiene ${ }^{\text {b }}$		$\begin{aligned} & \left.-137.4 \mathrm{ppm}^{\mathrm{c}}(\mathrm{t}, \mathrm{q})\right)^{3} J\left(\mathrm{FH}_{\mathrm{cis}}+\mathrm{FH}_{\mathrm{ti}}\right) 16.0 / 15.6 \mathrm{~Hz}, \\ & { }^{4} J\left(\mathrm{~F}_{\mathrm{A}} \mathrm{H}+\mathrm{F}_{\mathrm{B}} \mathrm{H}\right) 4.5 \mathrm{~Hz} \end{aligned}$	
trans-butene		$\begin{aligned} & -141.7 \mathrm{ppm},{ }^{2} J(\mathrm{FF}) 154.0 \mathrm{~Hz},{ }^{3} J\left(\mathrm{HF}_{\mathrm{cis}}\right) 16.0 \mathrm{~Hz}, \\ & { }^{3} J\left(\mathrm{HF}_{\mathrm{tr}}\right) 0.8 \mathrm{~Hz},{ }^{4} J\left(\mathrm{HF}_{\mathrm{cis}}\right) 2.9 \mathrm{~Hz},{ }^{4} J\left(\mathrm{HF}_{\mathrm{tr}}\right) 1.6 \mathrm{~Hz} \end{aligned}$	[9,10]
cis-stilbene ${ }^{\text {d }}$		$\begin{aligned} & -147.0 \mathrm{ppm}(\mathrm{~d}),{ }^{2} J(\mathrm{FF}) 157.2 \mathrm{~Hz}, \\ & -117.2 \mathrm{ppm}(\mathrm{~d}, \mathrm{t}),{ }^{3} J(\mathrm{FH}) 14.3 \mathrm{~Hz} \end{aligned}$	
trans-stilbene		- $134.0 \mathrm{ppm}(\mathrm{t}),{ }^{3} J\left(\mathrm{FH}_{\text {cis }}+\mathrm{FH}_{\mathrm{tr}}\right) 15.2 \mathrm{~Hz}$	
cyclohexylacetylene		-103.2 ppm (d, d), ${ }^{4} J(\mathrm{FH}) 2.6 \mathrm{~Hz},{ }^{3} J(\mathrm{FH}) 1.7 \mathrm{~Hz}$	[11]

diphenylacetylene

[^2]Table 3
NMR data of the products from the reaction of $\mathrm{Cd}\left(\mathrm{CF}_{3}\right)_{2}$ with AsCl_{3} or $\mathrm{AsF}_{3}{ }^{\text {a }}$

	$\delta\left({ }^{19} \mathrm{~F}\right)^{\mathrm{b}}$		$\delta\left({ }^{19} \mathrm{~F}\right)$	$\delta\left({ }^{13} \mathrm{C}\right)$	${ }^{1}$ J(CF)	${ }^{2} J(\mathrm{CF})$	${ }^{3} J(\mathrm{CF})$	${ }^{2} J(\mathrm{FF})$	${ }^{3} \mathrm{~J}$ (FF)	${ }^{4} \mathrm{~J}$ (FF)
	$\left(\mathrm{CF}_{2} \mathrm{Cl}\right)$	$\Delta \delta\left(\mathrm{F}_{\mathrm{A}}-\mathrm{F}_{\mathrm{B}}\right)$	(CF_{3})	$\left(\mathrm{CF}_{3}\right.$ or $\left.\mathrm{CF}_{2} \mathrm{Cl}\right)$						
$\overline{\mathrm{As}\left(\mathrm{CF}_{3}\right)_{3}}$	-	-	$-47.1{ }^{\text {d }}$	127.4	$340.6{ }^{\text {e }}$	-	$4.7{ }^{\text {e }}$	-	-	$7.1{ }^{\text {e }}$
$\mathrm{As}\left(\mathrm{CF}_{3}\right)_{2} \mathrm{Cl}$	-	-	-56.4	127.7	345.3	-	6.0	-	-	7.8
$\mathrm{As}\left(\mathrm{CF}_{3}\right)_{2} \mathrm{~F}$	-	-	-59.8	129.6	344.5	c	6.0	-	1.4	7.3
	-	-	-65.8	128.8	349.5	-	-	-	-	-
$\mathrm{As}\left(\mathrm{CF}_{3}\right) \mathrm{F}_{2}{ }^{\mathrm{f}}$	-	-	-71.0	131.0	346.1	c	$\stackrel{-}{c}$	-	1.7	$\overline{7}$
$\mathrm{As}\left(\mathrm{CF}_{3}\right)_{2}\left(\mathrm{CF}_{2} \mathrm{Cl}\right)$	-41.6	-	-46.4	${ }^{\text {c }}$	c	-	c	-	-	7.5
$\mathrm{As}\left(\mathrm{CF}_{3}\right)\left(\mathrm{CF}_{2} \mathrm{Cl}\right)_{2}$	-41.8	0.22	-46.6	${ }^{\text {c }}$	c	-	c		-	$7.0{ }^{\text {g }}$
$\mathrm{As}\left(\mathrm{CF}_{2} \mathrm{Cl}\right)_{2} \mathrm{Cl}$	-49.6	1.00	-	130.0	c	-	c	158.5	-	$8.7{ }^{\text {h }}$
$\mathrm{As}\left(\mathrm{CF}_{2} \mathrm{Cl}\right)_{2} \mathrm{~F}$	-53.5	0.94	-		c	-	c	165.9	6.6/5.5	$8.9{ }^{\text {i }}$
$\mathrm{As}\left(\mathrm{CF}_{2} \mathrm{Cl}\right) \mathrm{Cl}_{2}$	-57.9	-	-	131.9	355.2	-	-	-		-
$\mathrm{As}\left(\mathrm{CF}_{2} \mathrm{Cl}\right) \mathrm{FCl}$	-61.4	≈ 0.0	-	133.7	353.1	18.7	-	-	4.0	-
$\mathrm{As}\left(\mathrm{CF}_{2} \mathrm{Cl}\right) \mathrm{F}_{2}{ }^{\mathrm{j}}$	-65.2	-	-	134.9	350.7	17.5	-	-	1.4	-

${ }^{2}$ Chemical shifts in ppm with reference to external CFCl_{3}, coupling constants in Hz , solvent: CDCl_{3}.
${ }^{\mathrm{b}}$ Averaged values for AB systems.
${ }^{\text {c }}$ Not observed.
${ }^{\mathrm{d}} \Delta \delta\left({ }^{12} \mathrm{C} F_{\mathrm{A}}-{ }^{13} \mathrm{C} F_{\mathrm{B}}\right) 0.137 \mathrm{ppm}$.
${ }^{\text {c }}$ Positive signs for both ${ }^{3} J(\mathrm{CF})$ and ${ }^{4} J(\mathrm{FF})$ have been determined with respect to the negative sign of ${ }^{1} J(\mathrm{CF})$ by computer simulation of the $\mathrm{A}_{3} \mathrm{~B}_{6} \mathrm{X}$ spin system.
${ }^{\mathrm{f}} \delta(\mathrm{As} F)-118.0 \mathrm{ppm}$ (broad).
${ }^{g}\left[\mathrm{AB}_{2} \mathrm{X}_{3}\right.$ system, ${ }^{4} J\left(\mathrm{AA}^{\prime}\right) \approx^{4} J\left(\mathrm{BB}^{\prime}\right) \approx^{4} J\left(\mathrm{AB}^{\prime}\right) 7.0 \mathrm{~Hz} ;{ }^{4} J(\mathrm{AX}) \approx^{4} J(\mathrm{BX}) 7.3 \mathrm{~Hz}$.
${ }^{h}{ }^{4} J\left(\mathrm{AA}^{\prime}\right) ;{ }^{4} J\left(\mathrm{AB}^{\prime}\right) 9.4 \mathrm{~Hz},{ }^{4} J\left(\mathrm{BB}^{\prime}\right) 9.7 \mathrm{~Hz}$.
${ }^{\mathrm{i}}{ }^{4} J\left(\mathrm{AA}^{\prime}\right) \approx{ }^{4} J\left(\mathrm{BB}^{\prime}\right) ;{ }^{4} J\left(\mathrm{AB}^{\prime}\right)=9.8 \mathrm{~Hz}$.
${ }^{\mathrm{j}} \delta\left(\mathrm{As}{ }^{19} \mathrm{~F}\right)-111.2 \mathrm{ppm}$ (broad).
below $-5{ }^{\circ} \mathrm{C}$ with evolution of CF_{2} which may be trapped quantitatively with electron rich unsaturated systems. A selection of difluorocyclopropenation reactions along with characteristic NMR data is given in Table 2. With electron-poor systems such as allyl bromide dimerization of CF_{2} is preferred, and only minor amounts of (bromomethyl)difluorocyclopropane have been detected by NMR spectroscopy ($\delta\left({ }^{(19} \mathrm{F}\right)$ $-127.6 /-144.9 \mathrm{ppm},{ }^{1} J(\mathrm{FF}) 159.4 \mathrm{~Hz}$). The synthetic potential of the cadmium reagent was also used
for the generation of difluoromethyl ethers from alcohols. For example, when i-propanol and a suspension of excess $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{Cd}$ in toluene were slowly warmed from $-30{ }^{\circ} \mathrm{C}$ to ambient temperature, $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHOCF}_{2} \mathrm{H}$ $\left(\delta\left({ }^{19} \mathrm{~F}\right)-81.7 \mathrm{ppm},{ }^{2} J(\mathrm{FH}) 77.6 \mathrm{~Hz}\right)[12]$ was obtained in 50% yield along with HCF_{3}.

With inorganic chlorides such as $\mathrm{Me}_{3} \mathrm{SnCl}$ or AsCl_{3} insertion of CF_{2} into the metal-halide bond with formation of $\mathrm{CF}_{2} \mathrm{Cl}$ derivatives along with some trifluoromethylation is observed. Presumably, the latter is due

Table 4
NMR data of compounds observed in the reaction of $\mathrm{Cd}\left(\mathrm{CF}_{3}\right)_{2}$ with AsCl_{3} or AsF_{3} in presence of $\mathrm{CdEt}_{2}{ }^{\text {a }}$

	$\delta\left({ }^{19} \mathrm{~F}\right)^{\mathrm{b}}$		$\delta\left({ }^{19} \mathrm{~F}\right)$	${ }^{2} J(\mathrm{FF})$	${ }^{4} \mathrm{~J}$ (FF)	${ }^{4} \mathrm{~J}$ (HF)	${ }^{5} \mathrm{~J}(\mathrm{HF})$
	$\left(\mathrm{CF}_{2} \mathrm{Cl}\right)$	$\Delta \delta\left(\mathrm{F}_{\mathrm{A}}-\mathrm{F}_{\mathrm{B}}\right)$	$\overline{\left(\mathrm{CF}_{3}\right)}$	$\left(\mathrm{CF}_{3}\right.$ or $\left.\mathrm{CF}_{2} \mathrm{Cl}\right)$			
$\overline{\mathrm{As}\left(\mathrm{CF}_{2} \mathrm{Cl}\right)_{2} \mathrm{Et}}$	-44.5	1.13	-	163.4	$8.0^{\text {d }}$	${ }^{\text {c }}$	0.9/0.4
$\mathrm{As}\left(\mathrm{CF}_{2} \mathrm{Cl}\right) \mathrm{Et}_{2}{ }^{\mathrm{c}}$	-44.0	-	-	-	-	0.4	0.9
$\mathrm{As}\left(\mathrm{CF}_{2} \mathrm{Cl}\right)(\mathrm{F}) \mathrm{Et}{ }^{1}$	-56.4	1.60	-	162.1	-	c	0.9/0.6
$\mathrm{As}\left(\mathrm{CF}_{2} \mathrm{Cl}\right)(\mathrm{Cl}) \mathrm{Et}$	-52.8	1.96	-	156.9	-	c	$1.3{ }^{\text {g }}$
$\mathrm{As}\left(\mathrm{CF}_{3}\right) \mathrm{Et}_{2}$	-	-	-53.1	-	-	${ }^{\text {c }}$	0.7
$\mathrm{As}\left(\mathrm{CF}_{3}\right)(\mathrm{Cl}) \mathrm{Et}$	-	-	-50.2	-	-	0.3	0.7
$\mathrm{As}\left(\mathrm{CF}_{3}\right)\left(\mathrm{CF}_{2} \mathrm{Cl}\right) \mathrm{Et}$	-44.5	1.05	-50.6	164.6	$6.9{ }^{\text {h }}$	c	$0.7{ }^{\text {i }}$

[^3]${ }^{\text {c }} \delta\left(\mathrm{CH}_{3}\right) 1.2 \mathrm{ppm},{ }^{3} J(\mathrm{HH}) 7.8 \mathrm{~Hz}, \delta\left(\mathrm{CH}_{2}\right):(\mathrm{AB}$ system $) 1.9 / 1.7 \mathrm{ppm},{ }^{2} J(\mathrm{HH}) 13.1 \mathrm{~Hz}, \delta\left({ }^{13} \mathrm{CF}_{2} \mathrm{Cl}\right) 133.2 \mathrm{ppm},{ }^{1} J(\mathrm{CF}) 346.5 \mathrm{~Hz},{ }^{3} J(\mathrm{CH}) 5.0$
to fluorination by the cadmium fluoride formed in the course of the reaction followed by insertion of CF_{2} into the $\mathrm{M}-\mathrm{F}$ bond. For example, the reaction of $\mathrm{Me}_{3} \mathrm{SnCl}$ with $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{Cd}$ in CHCl_{3} gives both $\left(\mathrm{CF}_{2} \mathrm{Cl}\right) \mathrm{SnMe}_{3}$ $\left(\delta\left({ }^{19} \mathrm{~F}\right)-46.6 \mathrm{ppm},{ }^{2} J\left({ }^{119 / 117} \mathrm{SnF}\right) 236.2 / 225.7 \mathrm{~Hz}\right.$, $\left.\Delta \delta\left({ }^{35} \mathrm{Cl}-{ }^{37} \mathrm{Cl}\right) 0.0096 \mathrm{ppm}\right)$ and $\mathrm{CF}_{3} \mathrm{SnMe}_{3}$ in a $2: 1$ ratio with a total yield of 90%. With AsCl_{3} the distribution of the products seems to be similar to that of the reaction of donor-stabilized $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{Cd}$ [5]. The formation of $\left(\mathrm{CF}_{2} \mathrm{Cl}\right) \mathrm{AsX}_{2}(\mathrm{X}=\mathrm{F}, \mathrm{Cl})$ along with mixed $\mathrm{CF}_{3} / \mathrm{CF}_{2} \mathrm{Cl}$ containing species $\left(\mathrm{CF}_{3}\right)_{\mathrm{n}}\left(\mathrm{CF}_{2} \mathrm{Cl}\right)_{\mathrm{m}} \mathrm{AsX}_{3 \text { n-n-m }}$ is evident from the ${ }^{{ }^{9} \mathrm{~F}}$ NMR spectra (Table 3), the $\mathrm{CF}_{2} \mathrm{Cl}$ function being easily recognized by its isotope pattern in the ${ }^{19} \mathrm{~F}$ NMR spectra ($\Delta \delta\left({ }^{35} \mathrm{Cl}-{ }^{37} \mathrm{Cl}\right) 0.006$ $\mathrm{ppm})$. The facile insertion of CF_{2} into the $\mathrm{As}-\mathrm{F}$ bond was independently demonstrated by reaction of AsF_{3} with excess $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{Cd}$ which yields $\left(\mathrm{CF}_{3}\right)_{3}$ As almost quantitatively. If the reaction is carried out with a material still containing residual $\mathrm{CdC}_{2} \mathrm{H}_{5}$ functions, partial ethylation of the products is observed (Table 4) with $\left(\mathrm{CF}_{2} \mathrm{Cl}\right) \mathrm{AsEt}_{2}$ as the major product.

Acknowledgements

Financial support by the Fonds der Chemischen Industrie is gratefully acknowledged.

References

[1] B.L. Dyatkin, B.I. Martynov, I.L. Knunyants, S.R. Sterlin, L.A. Fedorov and Z.A. Stumbrevichute, Tetrahedron Lett., (1971) 1345; L.J. Krause and J.A. Morrison, J. Am. Chem. Soc., 103 (1981) 2995; D.J. Burton and D.M. Wiemers, J. Am. Chem. Soc., 107 (1985) 5014.
[2] H. Lange and D. Naumann, J. Fluorine Chem., 26 (1984) 1.
[3] J.A. Morrison, Adv. Inorg. Radiochem., 27 (1983) 293; D. Naumann, W. Strauss and W. Tyrra, J. Organomet. Chem., 407 (1991) 1; D. Naumann, M. Finke, H. Lange, W. Dukat and W. Tyrra, J. Fluorine Chem., 56 (1992) 215; R. Eujen and U. Thurmann, J. Organomet. Chem., 433 (1992) 63.
[4] L.J. Krause and J.A. Morrison, J. Am. Chem. Soc., 103 (1981) 2995; H. Lange and D. Naumann, J. Fluorine Chem., 27 (1985) 299.
[5] L. Riesel, H. Vogt and A. Brueckner, Z. Anorg. Allg. Chem., 588 (1990) 26.
[6] M.A. Guerra, T.R. Bierschenk and R.J. Lagow, J. Chem. Soc., Chem. Commun., (1985) 1550; J. Am. Chem. Soc., 108 (1986) 4103.
[7] B. Hoge and R. Eujen, in preparation.
[8] D.J. Brauer, H. Bürger and R. Eujen, J. Organomet. Chem., 135 (1977) 281
[9] G.A. Wheaton and D.J. Burton, J. Fluorine Chem., 9 (1977) 25.
[10] W.R. Dolbier, H. Wojtowicz and C.R. Burkholder, J. Org. Chem., 55 (1990) 5420.
[11] Y. Bessard and M. Schlosser, Tetrahedron, 47 (1991) 7323.
[12] R.A. Mitsch and J.E. Robertson, J. Heterocycl. Chem., 2 (1965) 152.

[^0]: * Corresponding author.

[^1]: ${ }^{a}$ In cm^{-1}; s strong, m medium, w weak, v very, sh shoulder, b broad.
 ${ }^{b}$ Recorded at $-50^{\circ} \mathrm{C}$.

[^2]: ${ }^{\text {a }}$ In toluene. Yields as determined by ${ }^{19} \mathrm{~F}$ NMR spectroscopy are in excess of 95%. ${ }^{19} \mathrm{~F}$ NMR chemical shifts are given with reference to external CFCl_{3}; multiplicities from proton coupled spectra are indicated s singlet, d doublet, t triplet, q quartet.
 ${ }^{h}$ With an excess of $\mathrm{Cd}\left(\mathrm{CF}_{3}\right)_{2}$ addition of a second CF_{2} moiety with formation of two isomers (ratio I: II $=4: 1$) is observed. Isomer (I): $\delta\left({ }^{19} \mathrm{~F}\right.$) $-137.7 \mathrm{ppm}\left(\mathrm{F}_{\mathrm{A}}\right),-139.3 \mathrm{ppm}\left(\mathrm{F}_{\mathrm{B}}\right),{ }^{2} J(\mathrm{FF}) 156.8 \mathrm{~Hz},{ }^{5} J\left(\mathrm{~F}_{\mathrm{A}_{5}} \mathrm{~F}_{\mathrm{B}^{\prime}}\right) 2.5 \mathrm{~Hz},{ }^{5} J\left(\mathrm{~F}_{\mathrm{B}_{5}} \mathrm{~F}_{\mathrm{B}^{\prime}}\right) 1.9 \mathrm{~Hz},{ }^{5} J\left(\mathrm{~F}_{\mathrm{A}} \mathrm{F}_{\mathrm{A}^{\prime}}\right) 1.3 \mathrm{~Hz}$; Isomer (II): $\delta\left({ }^{19} \mathrm{~F}\right)-135.0 \mathrm{ppm}$ $\left(\mathrm{F}_{\mathrm{A}}\right),-139.9 \mathrm{ppm}\left(\mathrm{F}_{\mathrm{B}}\right) ;{ }^{2} J(\mathrm{FF}) 159.0 \mathrm{~Hz},{ }^{5} J\left(\mathrm{~F}_{\mathrm{A}} \mathrm{F}_{\mathrm{B}^{\prime}}\right) 1.3 \mathrm{~Hz},{ }^{5} J\left(\mathrm{~F}_{\mathrm{B}} \mathrm{F}_{\mathrm{B}^{\prime}}\right) 1.8 \mathrm{~Hz},{ }^{5} J\left(\mathrm{~F}_{\mathrm{A}} \mathrm{F}_{\mathrm{A}^{\prime}}\right) 0.4 \mathrm{~Hz}$.
 ${ }^{c} \delta\left(\mathrm{~F}_{\mathrm{A}}\right)-\delta\left(\mathrm{F}_{\mathrm{B}}\right) \approx 0.02 \mathrm{ppm}$.
 ${ }^{\mathrm{d}}$ In chloroform.

[^3]: a See Table 3.
 ${ }^{\text {b }}$ Averaged values for AB systems.
 ${ }^{c}$ Not observed.
 ${ }^{d}{ }^{4} J\left(\mathrm{AA}^{\prime}\right) ;{ }^{4} J\left(\mathrm{AB}^{\prime}\right) 7.3 \mathrm{~Hz} ;{ }^{4} J\left(\mathrm{BB}^{\prime}\right) 6.5 \mathrm{~Hz}$. Hz .
 ${ }^{1}{ }^{3} J\left(\mathrm{~F}_{\mathrm{A}} \mathrm{F}\right) 8.4 \mathrm{~Hz},{ }^{3} J\left(\mathrm{~F}_{\mathrm{B}} \mathrm{F}\right) 4.2 \mathrm{~Hz}$.
 g ${ }^{5} J\left(\mathrm{~F}_{\mathrm{A}} \mathrm{H}\right) ;{ }^{5} J\left(\mathrm{~F}_{\mathrm{B}} \mathrm{H}\right) 0.7 \mathrm{~Hz}$.
 ${ }^{\mathrm{h}}{ }^{4} J\left(\mathrm{~F}_{\mathrm{A}} \mathrm{F}\right) \approx{ }^{4} J\left(\mathrm{~F}_{\mathrm{B}} \mathrm{F}\right)$.
 ${ }^{i}{ }^{5} J\left(\mathrm{CF}_{3} \mathrm{AsCH}_{2} \mathrm{CH}_{3}\right)$.

